-
RuntimeError: CUDA error: no kernel image is available for execution on the device프로그래밍/기계학습 2022. 9. 11. 19:28반응형
RTX3090로 교체하고 pytorch 설치 후 아래와 같은 에러가 발생하였다.
$ python3 Python 3.8.10 (default, Jun 22 2022, 20:18:18) [GCC 9.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> torch.rand(10).to("cuda") /home/.local/lib/python3.8/site-packages/torch/cuda/__init__.py:146: UserWarning: NVIDIA GeForce RTX 3090 with CUDA capability sm_86 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70. If you want to use the NVIDIA GeForce RTX 3090 GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/ ... nonzero_finite_vals = torch.masked_select(tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)) RuntimeError: CUDA error: no kernel image is available for execution on the device CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
검색해보니 3090과 호환이 되지 않는 cuda10 버전 대신 cuda11 버전을 설치하라고 한다.
You’ve most likely installed the binaries with the CUDA10.2 runtime, which is incompatible with your 3090. Install the pip wheels or conda binaries with CUDA11 and it should work.
참고로 설치된 cuda version은 nvcc --version 으로 확인이 가능하다.
실제로 10.1 버전이 설치되어 있다.
$nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Sun_Jul_28_19:07:16_PDT_2019 Cuda compilation tools, release 10.1, V10.1.243
검색해보니 아래와 같은 형태로 설치하려는 버전에(+cu110)을 추가하면 된다고 함.
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html(base) $ pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 -f https://download.pytorch.org/whl/torch_stable.html Looking in links: https://download.pytorch.org/whl/torch_stable.html Collecting torch==1.7.1+cu110 Downloading https://download.pytorch.org/whl/cu110/torch-1.7.1%2Bcu110-cp39-cp39-linux_x86_64.whl (1156.7 MB) |████████████████████████████████| 1156.7 MB 73 kB/s Collecting torchvision==0.8.2+cu110 Downloading https://download.pytorch.org/whl/cu110/torchvision-0.8.2%2Bcu110-cp39-cp39-linux_x86_64.whl (12.8 MB) |████████████████████████████████| 12.8 MB 38.1 MB/s Requirement already satisfied: numpy in ./anaconda3/lib/python3.9/site-packages (from torch==1.7.1+cu110) (1.21.5) Requirement already satisfied: typing-extensions in ./anaconda3/lib/python3.9/site-packages (from torch==1.7.1+cu110) (4.1.1) Requirement already satisfied: pillow>=4.1.1 in ./anaconda3/lib/python3.9/site-packages (from torchvision==0.8.2+cu110) (9.0.1) Installing collected packages: torch, torchvision Successfully installed torch-1.7.1+cu110 torchvision-0.8.2+cu110
관련 에러가 사라진 것을 확인할 수 있다.
$ python3 Python 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> torch.cuda.is_available() True >>> torch.randn(3,3).to("cuda:0") tensor([[-0.9963, -1.6286, 0.9210], [-1.0565, -1.7602, 1.5008], [-0.0684, 1.7714, 0.2132]], device='cuda:0') >>>
참고로 nvcc --version에서 나오는 버전은 변화가 없다.
(base) $ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2019 NVIDIA Corporation Built on Sun_Jul_28_19:07:16_PDT_2019 Cuda compilation tools, release 10.1, V10.1.243
참고: https://ssaru.github.io/2021/05/05/20210505-til_install_rtx3090_supported_pytorch/
728x90반응형'프로그래밍 > 기계학습' 카테고리의 다른 글
임베딩 검색을 사용하여 질문 답변하기 (유사어 검색 구현) (0) 2024.02.29 chatgpt prompt 사용법 (0) 2023.03.14 MLP에서 적절한 hidden unit 개수 산정하기 (0) 2021.01.25 pandas : TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'Index' (0) 2020.10.14 기계학습 추천 알고리즘 참고 리스트 (0) 2020.05.14